Rev. Hinrichs, C. S.; Rosenberg, S. A. Exploiting the curative potential of adoptive T-cell therapy for cancer. Life Sci., in press, DOI: However, the efficiency of arene–cycloalkane pairs currently is limited by unfavorable thermodynamics for hydrogen release. Chem. Journal of Natural Products 2012, 75 (6) , 1145-1159. Therapeutic targeting of pfkfb3 with a novel glycolytic inhibitor pfk158 promotes lipophagy and chemosensitivity in gynecologic cancers. Pharm. A STING-activating nanovaccine for cancer immunotherapy. Mol. Science2015, 348, 56–61. Mol. Protein@inorganic nanodumpling system for high-loading protein delivery with activatable fluorescence and magnetic resonance bimodal imaging capabilities. Theranostics2018, 8, 6248–6262. Sheng Wang, Guocan Yu, Zhantong Wang, Orit Jacobson, Li‐Sen Lin, Weijing Yang, Hongzhang Deng, Zhimei He, Yuan Liu, Zhi‐Yi Chen, Xiaoyuan Chen, Enhanced Antitumor Efficacy by a Cascade of Reactive Oxygen Species Generation and Drug Release, Angewandte Chemie International Edition, 10.1002/anie.201908997, 58, 41, (14758-14763), (2019). Rev. Metallo-N-Heterocycles - A New Family of Hydrogen Storage Material. Gao, R. F.; Li, D.; Xun, J.; Zhou, W.; Li, J.; Wang, J.; Liu, C.; Li, X. R.; Shen, W. Z.; Qiao, H. et al. Song, W. T.; Musetti, S. N.; Huang, L. Nanomaterials for cancer immunotherapy. However, low response rate and immune-related adverse effects (irAEs) remain problems during its management. Vodnala, S. K.; Eil, R.; Kishton, R. J.; Sukumar, M.; Yamamoto, T. N.; Ha, N. H.; Lee, P. H.; Shin, M.; Patel, S. J.; Yu, Z. Y. et al. Rev. Int. Chen, L.; Zhou, L. L.; Wang, C. H.; Han, Y.; Lu, Y. L.; Liu, J.; Hu, X. C.; Yao, T. M.; Lin, Y.; Liang, S. J. et al. Drug Discov.2016, 15, 235–247. Adv. Science2011, 331, 1565–1570. Chem.2019, 7, 764. B. STING: A master regulator in the cancer-immunity cycle. Biophys. Cell2014, 157, 832–844. Correspondence to Science1991, 254, 1643–1647. Chem., Int. Shuo Shi or Chunyan Dong. Abril-Rodriguez, G.; Ribas, A. Rev.2019, 48, 3771–3810. Biomaterials2018, 182, 82–91. Core-satellite polydopamine-gadolinium-metallofullerene nanotheranostics for multimodal imaging guided combination cancer therapy. Chung, S. J.; Nagaraju, G. P.; Nagalingam, A.; Muniraj, N.; Kuppusamy, P.; Walker, A.; Woo, J.; Györffy, B.; Gabrielson, E.; Saxena, N. K. et al. Sharma, P.; Allison, J. P. The future of immune checkpoint therapy. Science2020, 367, eaay0524. Chemistry2020, 26, 1668–1675. Kinetic studies of reversible hydrogen storage over sodium phenoxide-cyclohexanolate pair in aqueous solution. Int. Fukumura, D.; Xavier, R.; Sugiura, T.; Chen, Y.; Park, E. C.; Lu, N. F.; Selig, M.; Nielsen, G.; Taksir, T.; Jain, R. K. et al. Van Der Bruggen, P.; Traversari, C.; Chomez, P.; Lurquin, C.; De Plaen, E.; Van den Eynde, B.; Knuth, A.; Boon, T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Adv. Molecules2019, 24, 2071. Tumor induction of VEGF promoter activity in stromal cells. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Lin, X.; Song, X. F.; Zhang, Y. W.; Cao, Y. He also studied with Yang Shao Hao and Yang Cheng Fu. ACS Nano2015, 9, 16–30. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Development of the inhibitors that target the PD-1/PD-L1 interaction—a brief look at progress on small molecules, peptides and macrocycles. N. Engl. Saeed, M.; Gao, J.; Shi, Y.; Lammers, T.; Yu, H. J. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Tumor targeting strategies of smart fluorescent nanoparticles and their applications in cancer diagnosis and treatment. Nanotechnol.2017, 12, 648–654. Development of immuno-oncology drugs—from CTLA4 to PD1 to the next generations. Li, Y.; He, L. H.; Dong, H. Q.; Liu, Y. Q.; Wang, K.; Li, A.; Ren, T. B.; Shi, D. L.; Li, Y. Y. Fever-inspired immunotherapy based on photothermal cpg nanotherapeutics: The critical role of mild heat in regulating tumor microenvironment. Rev. Nanotechnol.2019, 14, 1007–1017. Chem. Breast cancer center, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, China, Jingxian Yang, Chunhui Wang, Shuo Shi & Chunyan Dong, You can also search for this author in Abdou, P.; Wang, Z. J.; Chen, Q.; Chan, A.; Zhou, D. R.; Gunadhi, V.; Gu, Z. Sci. A novel technology using nanomaterials may bring a solution. This work was supported by the National Natural Science Foundation of China (Nos. Nano Res.2018, 11, 5173–5192. Any queries (other than missing content) should be directed to the corresponding author for the article. Mater.2019, 4, 398–414. Yang Yu, Qijun Pei, Teng He, Ping Chen, Kinetic studies of reversible hydrogen storage over sodium phenoxide-cyclohexanolate pair in aqueous solution, Journal of Energy Chemistry, 10.1016/j.jechem.2019.04.008, (2019). J. Biol. Chem. Oncotarget2014, 5, 12472–12508. Nano Lett.2020, 20, 1637–1646. J. Nanomedicine2019, 14, 2465–2483. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Sun, Q. H.; Zhou, Z. X.; Qiu, N. S.; Shen, Y. Q. Smith, T. T.; Stephan, S. B.; Moffett, H. F.; McKnight, L. E.; Ji, W. H.; Reiman, D.; Bonagofski, E.; Wohlfahrt, M. E.; Pillai, S. P. S.; Stephan, M. T. In situ programming of leukaemia-specific t cells using synthetic DNA nanocarriers. Luo, M.; Wang, H.; Wang, Z. H.; Cai, H. C.; Lu, Z. G.; Li, Y.; Du, M. J.; Huang, G.; Wang, C. S.; Chen, X. et al. Novel miRNA genes hypermethylated in breast cancer. 13, 2595–2616 (2020). Nature2017, 541, 417–420. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Activatable semiconducting theranostics: Simultaneous generation and ratiometric photoacoustic imaging of reactive oxygen species in vivo. B. Front. Nat. Release2020, 321, 589–601. Conde, J.; Bao, C. C.; Tan, Y. Q.; Cui, D. X.; Edelman, E. R.; Azevedo, H. S.; Byrne, H. J.; Artzi, N.; Tian, F. R. Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells. Mater.2019, 31, 1802228. N. Engl. Pharm. Vaccines2015, 14, 1529–1541. ACS Nano2020, 14, 2172–2182. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Desale, S. S.; Raja, S. M.; Kim, J. O.; Mohapatra, B.; Soni, K. S.; Luan, H. T.; Williams, S. H.; Bielecki, T. A.; Feng, D.; Storck, M. et al. He, J. Y.; Li, C. C.; Ding, L.; Huang, Y. N.; Yin, X. L.; Zhang, J. F.; Zhang, J.; Yao, C. J.; Liang, M. M.; Pirraco, R. P. et al. Res.2014, 47, 1836–1844. Nat. Nanotechnol.2017, 12, 813–820. Theoretical calculations reveal that replacement of H with a metal leads to a reduction of the HOMO–LUMO energy gap and elongation of the C−H bond in the α site in cyclohexanolate, which indicates that the cyclohexanol is activated upon metal substitution. Cancer Biol.2015, 35, S185–S198. Greenwald, R. J.; Freeman, G. J.; Sharpe, A. H. The B7 family revisited. Adv. © 2020 Springer Nature Switzerland AG. Lu, Y. X.; Wu, F. P.; Duan, W. H.; Mu, X.; Fang, S.; Lu, N. N.; Zhou, X. F.; Kong, W. Engineering a “PEG-g-PEI/DNA nanoparticle-in-PLGA microsphere” hybrid controlled release system to enhance immunogenicity of DNA vaccine. Drug Deliv. Mol. Adv. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. JCI Insight2018, 3, 122700. Nanotechnol.2019, 14, 1160–1169. Dalton Trans.2018, 47, 3931–3939. Gulzar, A.; Xu, J. T.; Yang, D.; Xu, L. G.; He, F.; Gai, S. L.; Yang, P. P. Nano-graphene oxide-ucnp-ce6 covalently constructed nanocomposites for nir-mediated bioimaging and ptt/pdt combinatorial therapy. Cell. Z.; Wang, J. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy. Biomed. Brown, C. E.; Mackall, C. L. CAR T cell therapy: Inroads to response and resistance. Lewis, C. E.; Pollard, J. W. Distinct role of macrophages in different tumor microenvironments. Wang, W. Q.; Jin, Y. L.; Xu, Z. Acta Biomater.2018, 66, 310–324. Fan, W. P.; Yung, B.; Huang, P.; Chen, X. Y. Nanotechnology for multimodal synergistic cancer therapy. Eng.2018, 2, 578–588. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. Rev. Stephan, M. T.; Moon, J. J.; Um, S. H.; Bershteyn, A.; Irvine, D. J. Liu, R.; An, Y.; Jia, W. F.; Wang, Y. S.; Wu, Y.; Zhen, Y. H.; Cao, J.; Gao, H. L. Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. Legislator, 7th Legislative Yuan Semin. J. Med.2015, 373, 23–34. Mondal, S.; Roy, D.; Sarkar Bhattacharya, S.; Jin, L.; Jung, D.; Zhang, S.; Kalogera, E.; Staub, J.; Wang, Y. X.; Xuyang, W. et al. Nat. Control. 14DZ2261100 and 15DZ1940106), the Fundamental Research Funds for the Central Universities (No. Nanomedicine. Nature2019, 574, 45–56. Yang, W. J.; Zhu, G. Z.; Wang, S.; Yu, G. C.; Yang, Z.; Lin, L. S.; Zhou, Z. J.; Liu, Y. J.; Dai, Y. L.; Zhang, F. W. et al. Xu, P. P.; Wang, X. Y.; Li, T. W.; Wu, H. H.; Li, L. L.; Chen, Z. L.; Zhang, L.; Guo, Z.; Chen, Q. W. Biomineralization-inspired nanozyme for single-wavelength laser activated photothermal-photodynamic synergistic treatment against hypoxic tumors. ACS Nano2020, 14, 1468–1481. A.; Strijkers, G. J.; Van Diest, P. J.; Lowik, C. W. G. M.; Seynhaeve, A. L. B.; Ten Hagen, T. L. M.; Prompers, J. J. et al. Nat. Wei, X. X.; Fong, L.; Small, E. J. Prostate cancer immunotherapy with sipuleucel-T: Current standards and future directions. Atezolizumab and Nab-paclitaxel in advanced triple-negative breast cancer. June, C. H.; Sadelain, M. Chimeric antigen receptor therapy. Cheng, N.; Watkins-Schulz, R.; Junkins, R. D.; David, C. N.; Johnson, B. M.; Montgomery, S. A.; Peine, K. J.; Darr, D. B.; Yuan, H.; McKinnon, K. P. et al. Lan-yuen Guo 1 , Chao-pin Yang, Yu-lin You, Shen-kai Chen, Chich-haung Yang, Yi-you Hou, Wen-lan Wu Affiliation 1 Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, 807, China, Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. A.; Liu, X.; Bajwa, S. Z.; Khan, W. S.; Yu, H. J. Stimuli-activatable nanomedicines for chemodynamic therapy of cancer. Adv. Part of Springer Nature. Designer vaccine nanodiscs for personalized cancer immunotherapy. Ma, L. L.; Zhu, M.; Gai, J. W.; Li, G. H.; Chang, Q.; Qiao, P.; Cao, L. L.; Chen, W. Q.; Zhang, S. Y.; Wan, Y. K. Preclinical development of a novel CD47 nanobody with less toxicity and enhanced anti-cancer therapeutic potential. Wang Chonglu () Gao, C. Y.; Lin, Z. H.; Wu, Z. G.; Lin, X. K.; He, Q. Stem-cell-membrane camouflaging on near-infrared photoactivated upconversion nanoarchitectures for in vivo remote-controlled photodynamic therapy. Drug Deliv. Biomater. Ying-Chai Chen, Yi-Cheng Lin, Wan-Yu Wu. Wang, S.; Liu, X.; Chen, S. Z.; Liu, Z. R.; Zhang, X. D.; Liang, X. J.; Li, L. L. Regulation of Ca2+ signaling for drug-resistant breast cancer therapy with mesoporous silica nanocapsule encapsulated doxorubicin/sirna cocktail. ACS Nano2017, 11, 9536–9549. International Journal of Hydrogen Energy. Learn more. Radiology2019, 290, 9–22. Enhanced Magnetic Properties of Pr-Fe-B Thin Films by Segregation of Cu at Grain Boundary. J. Cancer2018, 9, 1773–1781. Oncotarget2017, 8, 72167–72181. Healthc., DOI:, Over 10 million scientific documents at your fingertips, Not logged in Kubik, T.; Bogunia-Kubik, K.; Sugisaka, M. Nanotechnology on duty in medical applications. Rev. Chem. Mater. Shao, K.; Singha, S.; Clemente-Casares, X.; Tsai, S.; Yang, Y.; Santamaria, P. Nanoparticle-based immunotherapy for cancer. Yu, T.; Guo, F. F.; Yu, Y. N.; Sun, T. T.; Ma, D.; Han, J. X.; Qian, Y.; Kryczek, I.; Sun, D. F.; Nagarsheth, N. et al. AAPS J.2015, 17, 358–369. Int. Natl. Call our hotline at 877-663-7469 or email your question at Stromal modulation and treatment of metastatic pancreatic cancer with local intraperitoneal triple mirna/sirna nanotherapy. Adv. Nat. Yang, Z. G.; Ma, Y. F.; Zhao, H.; Yuan, Y.; Kim, B. Y. S. Nanotechnology platforms for cancer immunotherapy. June, C. H.; O’Connor, R. S.; Kawalekar, O. U.; Ghassemi, S.; Milone, M. C. CAR T cell immunotherapy for human cancer. Int. Alternative activation of macrophages: Mechanism and functions. Z.; Irvine, D. J. Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Adv. Nanoparticles encapsulating nitrosylated maytansine to enhance radiation therapy. Immunotherapy, a burgeoning field differs from traditional cancer treatments, is revolutionizing oncologic therapeutics. Immunol. C2020, 106, 110294. Biomed. Li, J. C.; Zhen, X.; Lyu, Y.; Jiang, Y. Y.; Huang, J. G.; Pu, K. Y. Katheder, N. S.; Khezri, R.; O’Farrell, F.; Schultz, S. W.; Jain, A.; Rahman, M. M.; Schink, K. O.; Theodossiou, T. A.; Johansen, T.; Juhász, G. et al. Chen Lien-hung (Chinese: 陳連宏; pinyin: Chén Liánhóng), born 13 September 1973 in Tainan, Taiwan, is a Taiwanese former baseball player who played for Chinatrust Whales and Uni-President Lions of Chinese Professional Baseball League.